1,337 research outputs found

    The Mass-Metallicity and Luminosity-Metallicity Relation from DEEP2 at z ~ 0.8

    Get PDF
    We present the mass-metallicity (MZ) and luminosity-metallicity (LZ) relations at z ~ 0.8 from ~1350 galaxies in the Deep Extragalactic Evolutionary Probe 2 (DEEP2) survey. We determine stellar masses by fitting the spectral energy distribution inferred from photometry with current stellar population synthesis models. This work raises the number of galaxies with metallicities at z ~ 0.8 by more than an order of magnitude. We investigate the evolution in the MZ and LZ relations in comparison with local MZ and LZ relations determined in a consistent manner using ~21,000 galaxies in the Sloan Digital Sky Survey. We show that high stellar mass galaxies (log(M/M_solar)~10.6) at z ~ 0.8 have attained the chemical enrichment seen in the local universe, while lower stellar mass galaxies (log(M/M_solar)~9.2) at z ~ 0.8 have lower metallicities (Delta log(O/H)~0.15 dex) than galaxies at the same stellar mass in the local universe. We find that the LZ relation evolves in both metallicity and B-band luminosity between z ~ 0.8 and z~ 0, with the B-band luminosity evolving as a function of stellar mass. We emphasize that the B-band luminosity should not be used as a proxy for stellar mass in chemical evolution studies of star-forming galaxies. Our study shows that both the metallicity evolution and the B-band luminosity evolution for emission-line galaxies between the epochs are a function of stellar mass, consistent with the cosmic downsizing scenario of galaxy evolution.Comment: Accepted Version: 18 pages, 13 figure

    The Role of Starburst-AGN composites in Luminous Infrared Galaxy Mergers: Insights from the New Optical Classification Scheme

    Full text link
    We investigate the fraction of starbursts, starburst-AGN composites, Seyferts, and LINERs as a function of infrared luminosity (L_IR) and merger progress for ~500 infrared-selected galaxies. Using the new optical classifications afforded by the extremely large data set of the Sloan Digital Sky Survey, we find that the fraction of LINERs in IR-selected samples is rare (< 5%) compared with other spectral types. The lack of strong infrared emission in LINERs is consistent with recent optical studies suggesting that LINERs contain AGN with lower accretion rates than in Seyfert galaxies. Most previously classified infrared-luminous LINERs are classified as starburst-AGN composite galaxies in the new scheme. Starburst-AGN composites appear to "bridge" the spectral evolution from starburst to AGN in ULIRGs. The relative strength of the AGN versus starburst activity shows a significant increase at high infrared luminosity. In ULIRGs (L_IR >10^12 L_odot), starburst-AGN composite galaxies dominate at early--intermediate stages of the merger, and AGN galaxies dominate during the final merger stages. Our results are consistent with models for IR-luminous galaxies where mergers of gas-rich spirals fuel both starburst and AGN, and where the AGN becomes increasingly dominant during the final merger stages of the most luminous infrared objects.Comment: 30 pages, 19 figures, 10 tables, ApJ accepte

    The A2667 Giant Arc at z=1.03: Evidence for Large-scale Shocks at High Redshift

    Full text link
    We present the spatially resolved emission line ratio properties of a ~10^10 M_sun star-forming galaxy at redshift z=1.03. This galaxy is gravitationally lensed as a triple-image giant arc behind the massive lensing cluster Abell 2667. The main image of the galaxy has magnification factors of 14+/-2.1 in flux and ~ 2 by 7 in area, yielding an intrinsic spatial resolution of 115-405 pc after AO correction with OSIRIS at KECK II. The HST morphology shows a clumpy structure and the H\alpha\ kinematics indicates a large velocity dispersion with V_{max} sin(i)/\sigma ~ 0.73, consistent with high redshift disk galaxies of similar masses. From the [NII]/H\alpha\ line ratios, we find that the central 350 parsec of the galaxy is dominated by star formation. The [NII]/H\alpha\ line ratios are higher in the outer-disk than in the central regions. Most noticeably, we find a blue-shifted region of strong [NII]/H\alpha\ emission in the outer disk. Applying our recent HII region and slow-shock models, we propose that this elevated [NII]/H\alpha\ ratio region is contaminated by a significant fraction of shock excitation due to galactic outflows. Our analysis suggests that shocked regions may mimic flat or inverted metallicity gradients at high redshift.Comment: 11 pages, 9 figures, ApJ accepte

    Gas-Phase Oxygen Gradients in Strongly Interacting Galaxies: I. Early-Stage Interactions

    Full text link
    A consensus is emerging that interacting galaxies show depressed nuclear gas metallicities compared to isolated star-forming galaxies. Simulations suggest that this nuclear underabundance is caused by interaction-induced inflow of metal-poor gas, and that this inflow concurrently flattens the radial metallicity gradients in strongly interacting galaxies. We present metallicities of over 300 HII regions in a sample of 16 spirals that are members of strongly interacting galaxy pairs with mass ratio near unity. The deprojected radial gradients in these galaxies are about half of those in a control sample of isolated, late-type spirals. Detailed comparison of the gradients with simulations show remarkable agreement in gradient distributions, the relationship between gradients and nuclear underabundances, and the shape of profile deviations from a straight line. Taken together, this evidence conclusively demonstrates that strongly interacting galaxies at the present day undergo nuclear metal dilution due to gas inflow, as well as significant flattening of their gas-phase metallicity gradients, and that current simulations can robustly reproduce this behavior at a statistical level.Comment: Accepted for publication in Ap

    Examining the role of faith community groups with sexual offenders: A systematic review

    Get PDF
    The aim of this paper is to examine the role of faith-based communities and activities in helping those convicted of sexual offending to desist from crime and reintegrate back into their communities. It was found that much of the current research is limited to non-offending juvenile populations. Where research has been carried out on adult offenders, these tend to be custodial cases and exclude those convicted of sexual offending. The role of religious and spiritual groups in helping people convicted of sexual offending to desist from crime, while reintegrating into the community is, therefore, unknown. A number of parallels between the factors needed to promote desistance from sexual offending and the conditions encountered when engaged with a faith community are outlined. We would note that a religious and spiritual environment can: promote motivation to change, provide access to pro-social peers, offer moral guidance, provide a support network, and help bring meaning into people's lives. The potential for people to use faith-based communities or organizations to facilitate offending are also considered. Finally, implications for probation work and future research are also discussed

    The Origin of [OII] in Post-Starburst and Red-Sequence Galaxies in High-Redshift Clusters

    Get PDF
    We present the first results from a near-IR spectroscopic campaign of the Cl1604 supercluster at z~0.9 and the cluster RX J1821.6+6827 at z~0.82 to investigate the nature of [OII] 3727A emission in cluster galaxies at high redshift. Of the 401 members in the two systems, 131 galaxies have detectable [OII] emission with no other signs of current star-formation, as well as strong absorption features indicative of a well-established older stellar population. The combination of these features suggests that the primary source of [OII] emission in these galaxies is not the result of star-formation, but rather due to the presence of a LINER or Seyfert component. Using the NIRSPEC spectrograph on the Keck II 10-m telescope, 19 such galaxies were targeted, as well as six additional [OII]-emitting cluster members that exhibited other signs of ongoing star-formation. Nearly half (~47%) of the 19 [OII]-emitting, absorption-line dominated galaxies exhibit [OII] to Ha equivalent width ratios higher than unity, the typical value for star-forming galaxies. A majority (~68%) of these 19 galaxies are classified as LINER/Seyfert based on the emission-line ratio of [NII] and Ha, increasing to ~85% for red [OII]-emitting, absorption-line dominated galaxies. The LINER/Seyfert galaxies exhibit L([OII])/L(Ha) ratios significantly higher than that observed in populations of star-forming galaxies, suggesting that [OII] is a poor indicator of star-formation in a large fraction of high-redshift cluster members. We estimate that at least ~20% of galaxies in high-redshift clusters contain a LINER/Seyfert component that can be revealed with line ratios. We also investigate the effect this population has on the star formation rate of cluster galaxies and the post-starburst fraction, concluding that LINER/Seyferts must be accounted for if these quantities are to be meaningful.Comment: 33 pages, 17 figures, to appear in Ap

    An Integral Field Study of Abundance Gradients in Nearby LIRGs

    Get PDF
    We present for the first time metallicity maps generated using data from the Wide Field Spectrograph (WiFeS) on the ANU 2.3m of 9 Luminous Infrared Galaxies (LIRGs) and discuss the abundance gradients and distribution of metals in these systems. We have carried out optical integral field spectroscopy (IFS) of several several LIRGs in various merger phases to investigate the merger process. In a major merger of two spiral galaxies with preexisting disk abundance gradients, the changing distribution of metals can be used as a tracer of gas flows in the merging system as low metallicity gas is transported from the outskirts of each galaxy to their nuclei. We employ this fact to probe merger properties by using the emission lines in our IFS data to calculate the gas-phase metallicity in each system. We create abundance maps and subsequently derive a metallicity gradient from each map. We compare our measured gradients to merger stage as well as several possible tracers of merger progress and observed nuclear abundances. We discuss our work in the context of previous abundance gradient observations and compare our results to new galaxy merger models which trace metallicity gradient. Our results agree with the observed flattening of metallicity gradients as a merger progresses. We compare our results with new theoretical predictions that include chemical enrichment. Our data show remarkable agreement with these simulations.Comment: Accepted for publication in ApJ. 26 pages, 18 figure
    corecore